The Standard Conjectures

Up to now the construction of motives has not relied on any unproven assumptions. But we need to remind ourselves of the goal, namely to get a universal cohomology theory. To do this, one would need to address several conjectures of Grothendieck:

To explain the conjectures, fix a Weil cohomology theory H with coefficients from a characteristic zero field F. Recall that such a cohomology theory comes equipped with a cycle map $cl_x : CH^i(X)_{(0)} \longrightarrow H^{2i}(X)$, and the surjective image of cl_x in $H^{2i}(X)$ are called algebraic classes.

1. The Künneth conjecture C(X)

Let $\Delta(x) \subset X \times X$ be the diagonal, and consider $cl_{x \times x} (\Delta(x)) \in H^{2d}(X \times X)$. By the assumption on H, we have a Künneth decomposition: $H^{2d}(X \times X) = \bigoplus_{i=0}^{2d} H^{2d-i}(X) \otimes H^{i}(X).$ Denote by Δ_i the i^{\pm} component of $\Delta(X)$ in this direct sum. Then: <u>Conjecture C(X)</u>: The Künneth components Di are algebraic. This conjecture is known in a handful of cases. First when the variety admits some "algebraic cell decomposition", also known for curves, surfaces, and abelian varieties. Katz + Messing have also proven it for k= Fg. For most of these claims, see Kleiman's article, "Algebraic Cycles and the Weil Conjectures". Another tidbit, over k = C, C(X) would follow from the Hodge conjecture. 2. Conjectures of Lefschetz Type Choose some explicit projective embedding of X, ~ P, and Y a hyperplane section. Then we have the Lefschetz operator. $L: H^{i}(X) \longrightarrow H^{itz}(X), \quad \alpha \mapsto \alpha \cup cl_{X}(Y).$ Lⁱ:H^{d-i} ~→ H^{d+i}. We Since we have assumed hard Lefschetz, this gives isomorphisms then define $\Lambda = (L^{i+2})^{-1} \circ L \circ L^{i} : H^{i}(\mathbf{x}) \rightarrow H^{i-2}(\mathbf{x}),$ by the following diagram i.e. $H^{d-i}(\mathbf{x}) \xrightarrow{\mathsf{L}^{\mathsf{L}}} H^{d+i}(\mathbf{x})$ and similar for other bounds.

Alternatively we can define Λ using primitive elements $P^{i}(X) = \text{Ker}\left(L^{d-i+1}: H^{i} \rightarrow H^{2d-i+2}\right)$
we can decompose $H^{i}(X) = P^{i}(X) \oplus LH^{i-2}(X)$, hence every element at $H^{i}(X)$ has a
unique primitive decomposition:
$a = \sum_{j \ge max(i-r,o)} L^j a_j \in P^{i-2j}(X).$
Then define $\Lambda \alpha = \sum L^{j-1} \alpha_j$. Note that Λ is almost an inverse to L . $j_{Z \max(i-r, i)}$
Further, the linear map $\Lambda: H^{\circ}(X) \rightarrow H^{\circ}(X)$ comes from a topological correspondence, i.e. an element of $H^{\circ}(X \times X)$, and so
Conjecture B(X): The correspondence A is algebraic.
As before, if $k = C$, then $B(X)$ would follow from the Hodge conjecture. In general it is known to hold if X is a curve, surface with $h'(X) = 2$ dim $Pic^{\circ}(X)$, an abelian variety, or a generalized flag manifold. Further $B(X)$ is independent of $X \hookrightarrow \mathbb{P}^n$ and the hyperplane section.
Consider the commutative diagreen :
$H^{2i}(X) \xrightarrow{L^{2i}} H^{2d-2i}(X)$
cℓ _x
$A^{i}(\mathbf{x}) \longleftrightarrow A^{d-i}(\mathbf{x})$
$I_{m}(cl_{x}) \qquad \qquad$
injedive by
Hand Let Schetz.
<u>Conjecture</u> $A(X, L): A^{i}(X) \longrightarrow A^{d-i}(X)$ is an isomorphism. Alternatively, the cup product $A^{i}(X) \times A^{d-i}(X) \longrightarrow \mathbb{Q}$ is an isomorphism.
Note that $B(X) \Rightarrow A(X,L)$, and if you believe Grothendieck $A(X,L) \Rightarrow B(X)$.
3. Conjectures of Hodge Type
Recall that we have defined primitive cohomology as: $P^{i}(X) = Ker(L^{d-i+1}: H^{i}(X) \rightarrow H^{2d-i+2}(X))$ and hence we can talk about the primitive algebraic classes:
$A_{prim}^{i}(X) = A^{i}(X) \cap P^{2i}(X).$
Then the cup product induces a new pairing $A^{i}_{prim}(X) \times A^{i}_{prim}(X) \longrightarrow \mathbb{Q}$, by sending $(X, y) \longmapsto (-1)^{i} \operatorname{Tr} \circ (L^{d-2i}(X) \cup y) \in \mathbb{Q}$.
Conjecture Hdg(X): The pairing above is positive definite.

If k = C, Hodge theory gives a proof, as a comparison with the Betti-cohomology and the Riemann Bilineor Relations proves it. It's also known for surfaces over any field. Some relations: $D(X) \Rightarrow A(X,L)$, as then $A^{i}(X) = Z(X)/Z_{mum}(X)$, and the pairing is nondegenerate by definition. · If Hdg(X), then D(X) ↔ A(X,L). • $B(x) + H_{dg}(x) \Rightarrow D(x)$. • $B(x) + Hdg(x) \Rightarrow D(x)$. • $B(x) + Hdg(x) \Rightarrow Mot_{num}$ is abelian semisimple. This is actually already true. In particular all of them would imply the existence of a universal Weil cohomology theory, which would be given by Motnum. The surprising fact is known as Jamsen's theorem Then (Janusen): The following are equivalent: 1) Motr is abelian semisimple, 2) $\sim = \sim_{num}$, 3) for all Xd & SmProjn, the F-algebra Corr (X,X) = is a finite dimensional semi-simple F-algebre. See Murre for the proof.