<u>In Standard Conjectures</u> Up to now the construction of motives has not relied on any unproven assumptions. But we need to remind ourselves of the goal, namely to get a universal cohomology theory. To do this, one would need to address several conjectures of Grothendieck To explain the conjectures, fix a Weil cohomology theory H with coefficients from a characteristic zero field F. Recall that such a cohomology theory comes
A discussion of the contract of the contract of the contract of the discussion of the discussion of the discus equipped with a cycle map $c l_{\mathsf X}$ CH $^{\mathsf c}$ (X) $_{\mathbf 0} \,\longrightarrow\, H^{\mathsf c\mathsf c}$ (X), and the surjective image
of $c l_{\mathsf X}$ in $\mathsf H^{2\mathsf c}(\mathsf X)$ are called algebraic classes. 1. The Künneth conjecture $C(x)$ hecation is a contract when the contract of th Let $\Delta(x)\subset X^{\times}X$ be the diagonal, and consider $cl_{\mathsf{x}\mathsf{x}\mathsf{x}}(\Delta(x))\subseteq H^{\mathsf{an}}(X^{\mathsf{x}}X)$. By
the assumption on H, we have a Künneth decomposition: H^{2d} $(\times \times \times) = \bigoplus_{i=0}^{2d} H^{2d-i}(\times) \otimes H^{i}(\times)$ Denote by Δ_i the $i^{\underline{t}\underline{t}}$ component of $\Delta(x)$ in this direct sum. Then: Conjecture C(x): The Künneth components Δi are algebraic. This conjectuve is known in a handful of cases. First when the variety admits some "algebraic cell decomposition", also known for curves, surfaces, and abelian varieties. Katz + Messing have also proven it for $k = F_q$. For most of these claims, see Kleiman's article, "Algebraic Cycles and the Weil Conjectures". Another tidbit, over $k = 0$, $C(x)$ would follow from the Hodge conjecture. 2. Conjectures of lofschote Type
Choose some explicit projective embedding of X, =>Pⁿ, and Y a hyperplane section. Then we have the Lefschetz operator. $L: H^i(x) \longrightarrow H^{i+2}(x)$, $x \mapsto \alpha \cup cl_x(y)$. Since we have assumed hard Lefschetz, this gives isomorphisms $L^{\hat{i}}:H^{d-\hat{i}}\stackrel{d}{\longrightarrow}H^{d+\hat{i}}$. We then define $\Lambda = (L^{i+2})^{-1} \circ L \circ L^{i} : H^{i}(X) \to H^{i-2}(X)$, i.e by the following diagram $H^{d-i}(x) \longrightarrow^{L^{c}}$ $x \rightarrow$ $\qquad \longrightarrow$ $H^{\alpha}(\mathbf{x})$ $\begin{array}{ccc}\n & & \mathbf{L} & \mathbf{O} \leq i \leq n \\
\downarrow & & \downarrow i+2. & \mathbf{J} \\
\downarrow i-2 & \downarrow i & \mathbf{J}\n\end{array}$ $H^{d-i-2}(x) \xrightarrow{L} H^{d+i+2}$ and similar for other bounds.

If k = C, Hodge theory gives a proof, as a comparison with the Betti-cohomology and the Riemann Bilinear Relations proves it. Its also known for surfaces over any field. Some relations! D (x) \Rightarrow $A(x, L)$, as thun $A^{i}(x)$ = $Z(x) / Z_{num}(x)$, and the pairing is nondegenerate by definition \cdot If Hdg(x), then $D(x) \Longleftrightarrow A(x, L)$. $B(x) + Hdg(x) \Rightarrow D(x)$ $B(x)$ + $Hd_{\text{g}}(x)$ \Rightarrow Mot_{num} is abelian semisimple. This is actually already true. In particular all of them would imply the existence of ^a universal Weil cohomology theory, which would be given by Motnum. The surprising fact is known as Janusen's theorem Thm (Jannsen): The following are equivalent: 1) Mot_r is abelium semisimple, $2)$ \sim = \sim num, 3) for all X_d ϵ SurFroju, the F-algebra $Corr_\alpha(x,x)_{\epsilon}$ is a finite dimensional semi-simple F-algebra. See Murre for the proof.